WAEC syllabus 34/waec-basic-electronics-syllabus
WAEC Basic Electronics Syllabus

PREAMBLE

The syllabus is intended to equip candidates with broad understanding of the technology of manufacturing maintenance and repair of domestic and industrial equipment. It will also offer candidates sufficient knowledge and skills to form a valuable foundation into electronic-related vocation or pursue further educational qualification.
Candidates will be expected to cover all the topics.

OBJECTIVES

The objective of the syllabus is to test candidates:
1. Knowledge and understanding of the basic concepts and principles of electronics; 
2. Ability to use simple electronic devices to build and test simple electronic systems; 
3. Problem-solving skills through the use of the design process; 
4. Preparedness for further work in electronics; 
5. Knowledge in entrepreneurial skills and work ethics.

SCHEME OF EXAMINATION

There will be three papers, Papers 1, 2 and 3, all of which must be taken. Papers 1 and 2 will be a composite paper to be taken at one sitting.
PAPER 1: Will be a multiple-choice paper comprising fifty questions to be answered in 1 hour for 50 marks.
PAPER 2: Will consist of seven short-structured questions. Candidates will be required to answer five questions in 1 hour for 50 marks.
PAPER 3: Will be a practical test. The paper will consist of two questions. Candidates will be required to answer both questions in 3 hours for 100 marks.

DETAILED SYLLABUS

1. ELECTRON EMISSION    Types of electron emission Qualitative treatment should include :    Application of electron emission Thermionic emission, photoemission,    secondary emission and field emission.    Relate to diode, triode, tetrode, pentode and    cathode ray tube.   2. MEASURING INSTRUMENTS    Concept of measuring instrument Qualitative treatment only which should    Principles of operation and protection include:    of measuring instruments Classification – analogue and digital;    Types and uses of multimeter, voltmeter,    ammeter, ohmmeter, oscilloscope etc.   3. SEMICONDUCTOR    Concept of semiconductor Qualitative treatment only.    Semiconductor materials (silicon,    germanium etc.)    Doping    Formation of p-type and n-type    semiconductors    SEMICONDUCTOR DIODES    Concept of diodes Treatment should include operational    principles of diodes.    Biasing of diodes Type of diodes.    Diode ratings – voltage, current and power    Application of diodes.    Construction of a simple circuit using a    P-N junction diod.e    Practical demonstration of I-V characteristics    of P-N junction in the forward and reverse bias modes.    TRANSISTORS    Concept of transistor Meaning of transistor, biasing of transistor,    Uses and advantages.    BJT characteristics.    Advantages of transistor over valves.    Advantages of MOSFET over BJT.     
OTHER SEMICONDUCTOR DEVICESThermistor, diac, triac and thyristor etc
INTEGRATED CIRCUITS
4.  CIRCUIT ANALYSIS
ELECTRIC CURRENT
Structure of atom Conductors and insulators Direc t and alternating current Sources of direct current Sources of alternating current
RELATIONSHIP BETWEEN VOLTAGE, CURRENT AND RESISTANCECurrent, voltage and resistance
Ohm’s law
Simple calculation of current, voltage and resistance
ELECTRIC POWER
Concept of electric power Relationship between power, current and voltage
Other formulae for finding electrical power
Calculation of electric power in a given circuit
Formation, function and principles of Operation.
Transistor as a switch, an inverter and an amplifier.
Verification of BJT characteristics. Input, output and transfer characteristics. Transfer configuration.
Qualitative treatment only. Formation, functions and principles of operation.Advantages over discrete components.
Circuit symbols.Principles of operation.
Applications.
Application of integrated circuits. Explanation of RAM,ROM and EPROM.
Qualitative treatment only.
Uses of conductors and insulator. Differences between direct and alternating current.
Construction of simple circuit to demonstrateOhm’s law.
Qualitative and quantitative treatments.
CIRCUIT COMPONENTS
Types of resistors, capacitors and inductors
Symbols, signs and unit of measurement
Colour coding and rating of resistors and capacitors
ELECTRIC CIRCUIT
Electric circuit Circuit boards
Circuit arrangement: series, parallel, series-parallel
Calculation on circuit arrangement
ALTERNATING CURRENT
CIRCUITSR-L-C circuits
Generator principles
POWER IN A.C. CIRCUITS
5.  AMPLIFIERS
VOLTAGE AMPLIFIERS
POWER AMPLIFIERS
Practical determination of the value of a fixed colour code resistor.
Carry out practical wiring of different circuit arrangement.
Qualitative and quantitative treatments should include:
- Concepts of capacitive reactance, inductive reactance and impedance; - RL and RC circuits; 
- Calculations of capacitive reactance (XC) and inductive reactance (XL); 
- Resonance frequency. 
Principles of operation of an a.c. generator.
Qualitative and quantitative treatments of- Power and power triangle; 
- Power factor and its correction; 
- Advantages and disadvantages of power factor correction; 
- Calculation of power factor; - Q-factor and bandwidth. 
Biasing methods. Treatment of the transistor as single stage.
Common-emitter amplifier. Frequency response of an amplifier.
Advantages and disadvantages of negative feedback.
Classification: Class A, class B, class AB,
PUSH-PULL AMPLIFIERS
OPERATIONAL AMPLIFIERS
6.  POWER SUPPLY
D.C. POWER SUPPLY UNIT
RECTIFICATION
OSCILLATORS, MULTIVIBRATORS AND DIGITAL BASICS 
OSCILLATORSclass C, application, power gain, methods of
biasing and efficiency. Classification of power gain.
Qualitative treatment including matched and complementary pairs.
Properties of an ideal operational amplifier. Inverting and non-inverting operational amplifiers(op-amps).
Types of operational amplifiers. Applications of op-amps.
Simple calculations involving inverting, non-inverting, summing amplifiers and voltage follower.
Dry cells, solar cells, cadium cells, accumulators.
Batteries: Rechargeable and non-rechargeable.
Qualitative treatment should include:- Rectification, regulation; 
- Types of voltage regulator e.g. diac, triac, thyristor, series voltage regulator, transistorized electronic voltage regulator. Functions of each block.
Difference between positive feedback(oscillator) and negative feedback (amplifier).
Principles of an oscillator.
Types of oscillator: Hartley, Colpitts, phase shift, tuned (load and crystal) oscillators. Advantages of negative feedback. Calculations involving negative feedbacks. Block diagram of an oscillator. Application of oscillator.
MULTIVIBRATORS(Non-sinusoidal)
Principles of operation and applications
DIGITAL BASICSNumber systemLogic gates(Combinational)8. COMMUNICATION SYSTEMS, TRANSDUCERS AND SENSORS
Electromagnetic waves Characteristics of radio wavesPrinciples of radio wavesStages of radio receiverFault detection in radio receiverTransmitters and receiversTypes of multivibrators. (monostable, bistable and astable)Different number system e.g. binary, octal and hexadecimal.Simple calculation in binary number. Conversion from one base to another and vice-versa.Addition and subtraction of binary numbers.Qualitative treatments of AND, OR, NOT, NOR and NAND.Logic gates using switching arrangements, truth table and Boolean expression.Relationship between velocity frequency and wavelength.Meaning of radio communication.Modulation and demodulation.Advantages of F.M. over A.M.Phase modulation (mention only).Types of radio receivers.Advantages of superheterodyne over direct input receiver.Use faulty radio and detect and repair fault. Project work on construction and designing of a simple radio receiver.Block diagrams of A.M. and F.M. transmitters. Block diagrams of A.M. and F.M. Superheterodyne radio receivers.Block diagrams of mono and colour. T.V.chrome receivers.Functions of each block and direction of signal flow.Qualitative treatment of T.V. standard. (NTSC,PAL,SECAM,BIG)
Methods of CommunicationTransducers and SensorsAcoustic transducer
9.  CONTROL SYSTEM
SERVO MECHANISM
MAGNETIC AND ELECTRIC FIELDS, ELECTROMAGNETIC INDUCTION/TRANSFORMERS 
Electromagnetic field  Electromagnetic induction Self and mutual induction Fibre optics, microwave, satellite, cellular phone, digital communication network.
Meaning of transducers and sensors. Principles of operation.
Types and uses to include: Acoustic, dynamic electrostatic, electromagnetic, capacitive, pressure sensor, photoelectric, proximity sensor etc.
Thermistor as a temperature sensing device.
Qualitative treatments only.
Types of acoustic transducers e.g. loudspeaker, microphone, earphone.
Principles of operation and function. Application of acoustic transducers.
Qualitative treatment only
- Types of control circuits (open and close loop). 
- Principles of operation of open loop and close loop. 
Qualitative treatment only.- Meaning. 
- Principle of operation, types, uses and application e.g. in car, doors, booths etc. 
Trace magnetic lines of force current-carrying conductor.
Lenz’s and Faraday’s laws.
Definitions only.
Calculations involving energy stored in a coil. Applications of electromagnetism.
Electric bell, solenoid, loudspeaker, buzzer, moving-coil instrument, moving-iron instrument, earphone and microphone.


WAEC Subjects
Agricultural Science
Biology
Chemistry
Christian Religious Knowlege
Commerce
Economics
English
Geography
Government
Literature
Mathematics